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Gradient Extremum Seeking
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Assumption: quadratic static map
y(t) = y∗ + H

2 (θ − θ∗)2

Gradient estimate:
G(t) = 2

a sin(ωt)y(t)

Perturbation signals:
S(t) = a sin(ωt)
M(t) = 2

a sin(ωt)

Estimation error: θ̃(t) = θ̂(t)− θ∗

Error dynamics: ˙̃θ(t) = KM(t)y(t)
= KM(t)

[
y∗ + H

2 (θ̃(t) + a sin(ωt))2]
Average error dynamics:

Q(·)

K1
s+ ×

S(t)

θ̂(t) U(t) G(t)

M(t)

y(t)θ(t)
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Recap: Averaging
Consider the original system

ż = f (ωt, z), z(0) = z0, (1)

and the average system

żav = fav(zav), zav(0) = zav,0, fav(zav) = 1
T

∫ T

0
f (τ, zav)dτ.

If zav = 0 is an exponentially stable solution, then there exists
ω̄ > 0 such that for all ω > ω̄

‖z(t)− zav(t)‖ ≤ O(1/ω), ∀ t ∈ [0,∞),

Furthermore, (1) has a unique exponentially stable, T-periodic
solution z̄(t, 1/ω) with the property ‖z̄(t, 1/ω)‖ ≤ O(1/ω).



Outline Standard ES ES with hyperbolic PDEs ES with parabolic PDEs ES with Nonlinear PDEs ES with Multiple PDEs

Gradient Extremum Seeking

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira
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Q(·)

K1
s+ ×

S(t)

θ̂(t) U(t) G(t)

M(t)

y(t)θ(t)
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Newton-based Extremum Seeking
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Assumption: quadratic static map
Hessian estimate:

Ĥ(t) = N(t)y(t)

Demodulating Signal:
N(t) = − 8

a2 cos(2ωt)

Auxiliary Variable:
z(t) = Γ(t)G(t)

Assumption: quadratic static map
Riccati Filter (error):

Γ̃av(t) = Γav(t)− H−1

Average error dynamics: K̄ = −K < 0
Ĥav(t) = H
Γav(t)→ H−1

˙̃θav(t) = K̄ θ̃av(t)

Q(·)

K
s ×

×

+

Γ̇ = ωr Γ−ωr ĤΓ2

ΓG
Ĥ N(t)

M(t)

Gz

y

θ̂

θ

S(t)
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Gradient Extremum Seeking for Dynamic (ODE) Systems
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Assumptions:
• f (t, α(x , θ)) = 0 if and only if x = l(θ).
• For each θ ∈ R, the equilibrium x = l(θ) of the system is locally

exponentially stable with decay and overshoot constants uniform in θ.
• y = Q(θ) = h ◦ l(θ).
• There exists θ∗ ∈ R such that (h ◦ l)′(θ∗) = 0 and (h ◦ l)′(θ∗) < 0.

Analysis Tools: Averaging and Singular Perturbation 8
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Gradient Extremum Seeking for Dynamic (ODE) Systems
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• Theorem 1: There exists a ball of initial conditions around the point
(x , θ̂ , ξ , η) = (l(θ∗) , θ∗ , 0 , h ◦ l(θ∗)) and constants ω̄ , δ̄ and ā such that
for all ω ∈ (0 , ω̄), δ ∈ (0, δ̄), and a ∈ (0, ā), the solution
(x(t) , θ̂(t) , ξ(t) , η(t)) exponentially converges to an
O(ω + δ + a)-neighborhood of that point. Furthermore, y(t) converges to
an O(ω + δ + a)-neighborhood of h ◦ l(θ∗).
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Predictor Feedback for ES with Sensor Delays
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Delayed Output:
y(t) = Q(θ(t − D))

Gradient Estimate:
1
Π
∫ t

0 M(σ)ydσ = H θ̃av

Q̂′av = (My)av = H θ̃av (t − D)
Hessian Estimate:

1
Π
∫ t

0 N(σ)ydσ = H
Q̂′′av = (Ny)av = H

Dither and Demodulation Signals:
S(t) = a sin(ωt)
M(t) = 2

a sin(ω(t − D))
N(t) = − 8

a2 cos(2ω(t − D))
Averaging Analysis (without prediction):

U(t) = KQ̂′(t)
˙̂θ(t) = U(t) , ˙̃θav = kH θ̃av (t − D)
˙̂Q′av (t) = HUav (t − D) 10
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Predictor Feedback for ES with Sensor Delays

Delay Prediction Feedback:
Uav (t) = KQ̂′av (t + D)

Future State:
Q̂′av (t + D) = Q̂′av (t) + H

∫ t
t−D Uav (σ)dσ

Filtered Predictor Feedback Law:
U(t) = c

s+c

{
K
[
Q̂′(t) + Q̂′′(t)

∫ t
t−D U(τ)dτ

]}
Lag Filter: Hale and Lunel’s Averaging Theorem + Inverse optimality

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira
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Predictor Feedback for ES with Sensor Delays

• Theorem: Consider the control system in the Figure with delayed output and D ≥ 0 being a simple scalar.
There exist c∗ > 0 such that, ∀c ≥ c∗, ω∗ > 0 such that, ∀ω > ω∗, the closed-loop delayed system
with state θ̃(t − D), U(σ), ∀σ ∈ [t − D, t], has a unique exponentially stable periodic solution in t of
period Π := 2π/ω, denoted by θ̃Π(t − D), UΠ(σ), ∀σ ∈ [t − D, t], satisfying, ∀ ≥ 0:(∣∣θ̃Π(t − D)

∣∣2 +
∣∣UΠ(t − D)

∣∣2 +

∫ t

t−D

∣∣UΠ(τ)
∣∣2 dτ

)1/2

≤ O(1/ω) .

Furthermore, limt→+∞ sup |θ(t)− θ∗| = O(a + 1/ω) and
limt→+∞ sup |y(t)− y∗| = O(a2 + 1/ω2).

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira

12



Outline Standard ES ES with hyperbolic PDEs ES with parabolic PDEs ES with Nonlinear PDEs ES with Multiple PDEs

Predictor Feedback for ES with Delays - Simulation
Q(θ) = 5− (θ − 2)2, (θ∗, y∗) = (2, 5), H = −2 and D = 5s

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira
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Predictor Feedback for ES with Delays - Simulation
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Predictor Feedback for ES with Delays - Application

Neuromuscular Electrical Stimulation (NMES)
Challenges for Modeling and Actuation

Patients Variability

• Different kinds of lesion (parametric/relative degree
uncertainties)
• Patient response changes over time (time-varying system)
• Saturation, dead-zone and fatigue (nonlinear phenomena)
• Time delays (small but present)
• Gravity action (disturbances for upperward movements)
• Hybrid bidirectional actuator (biceps and triceps)

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira
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Predictor Feedback for ES with Delays - Application

Assistive Robotics for Stroke Patients

• Motor disorder
• Spasticity (hypertonia)
• Physiotherapy

Rehabilitation

• Passive or active movement
• Closed-loop feedback aids patients’ recovery
• Design control laws for NMES

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira
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Predictor Feedback for ES with Delays - Application
Adaptive Control Strategy

Which Controller? Adaptive Control!
• Conventional Adaptive Control (control parametrization)
• Model Reference Adaptive Control (delays/relative degree obstacles)
• PID with Extremum Seeking for adaptation: J(θ) = 1

T−t0

∫ T
t0

e2(t)dt

Automatic controller tuning: adaptation
• May solve the huge gap between healthy volunteers and stroke patients

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira
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Predictor Feedback for ES with Delays - Experiment 1
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Predictor Feedback for ES with Delays - Experiment 2

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira
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PDE Compensation for ES with Wave Process
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Actuation dynamics (Wave):
Θ(t) = ∂xα(0, t)
∂ttα(x , t) = ∂xxα(x , t), x ∈ [0,D]
α(0, t) = 0
∂xα(D, t) = θ(t)

Output map:
y(t) = Q(Θ) = y∗+ H

2 (Θ(t)−Θ∗)2

Dither Signals:
S(t) = a

ω sin(ωD) sin(ωt)
M(t) = 2

a sin(ωt)
N(t) = − 8

a2 cos(2ωt)
Estimate Error:

θ̃(t) = θ̂(t)− θ∗
Propagated Estimate Error:

ϑ(t) = Θ̂(t)−Θ∗

Q( · )αtt(x, t) = αxx(x, t)

Compensador
EDP da Onda

1
s+

×

×

S(t)

θ̂(t) U(t)

G(t)

Ĥ(t)

M(t)

N(t)

y(t)θ(t) = αx(D, t) Θ(t) = αx(0, t)

20
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PDE Compensation for ES with Wave Process
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Estimated Error Dynamics:
ϑ̇(t) = ∂x u(0, t)
∂ttu(x , t) = ∂xx u(x , t), x ∈ [0,D]
u(0, t) = 0
∂x u(D, t) = U(t)

Control Law with Wave Process Compensation:
U(t) = c

s+c

{
c̄
[
KĤ(t)u(D, t)−∂tu(D, t)

]
+ρ̄(D)KG(t)

+KĤ(t)
∫ D

0 ρ̄(D − σ)∂tu(σ, t)dσ
}

Q( · )αtt(x, t) = αxx(x, t)

Compensador
EDP da Onda

1
s+

×

×

S(t)

θ̂(t) U(t)

G(t)

Ĥ(t)

M(t)

N(t)

y(t)θ(t) = αx(D, t) Θ(t) = αx(0, t)
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PDE Compensation for ES with Wave Process
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Theorem: Consider the closed-loop system in the figure above. For a sufficiently large
c > 0, there exists some ω̄(c) > 0, such that ∀ω > ω̄, the closed-loop system with
states ϑ(t), u(x , t), has a unique exponentially stable periodic solution in t of period
Π := 2π/ω, denoted by ϑΠ(t), uΠ(x , t), satisfying ∀t ≥ 0:(∣∣ϑΠ(t)

∣∣2 +
∥∥∂x uΠ(t)

∥∥2 +
∥∥∂tuΠ(t)

∥∥2 +
∣∣∂x uΠ(D, t)

∣∣2)1/2
≤ O (1/ω) .

Furthermore, lim sup
t→∞

|θ(t)− θ∗| = O (a/ω + 1/ω), lim sup
t→∞

|Θ(t)−Θ∗| = O (a + 1/ω)

and lim sup
t→∞

|y(t)− y∗| = O
(

a + 1/ω2
)

.

Q( · )αtt(x, t) = αxx(x, t)

Compensador
EDP da Onda

1
s+

×

×

S(t)

θ̂(t) U(t)

G(t)

Ĥ(t)

M(t)

N(t)

y(t)θ(t) = αx(D, t) Θ(t) = αx(0, t)
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PDE Compensation for ES with Wave Process - Simulation
H = −0.2, Θ∗ = 2, y∗ = 5, D = 1, ω = 10, a = 0.2, c = 10,
c̄ = 0.5 and K = 0.4

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira
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PDE Compensation for ES with Wave Process -
Application

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira
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Problem Statement and Motivation
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• Θ(t) : propagated input
• (Θ∗, y∗): extremum of static map

Signals

• θ(t) : input/actuator
• y(t): output

x = D x = 0

Diffusion process y

Θ

(Θ∗, y∗)

Static map Q(Θ)

Θ(t) y(t)θ(t)

• heat transfer
• mixing of chemical

substances
• information distribution

25
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Problem Statement and Motivation
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Semi-model-based control concept

• Θ(t) : propagated input
• (Θ∗, y∗): extremum of static map

System Signals

• θ(t) : input/actuator
• y(t): output

x = D x = 0

Diffusion process y

Θ

(Θ∗, y∗)

Static map Q(Θ)

?
Controller

Θ(t) y(t)θ(t)

25
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Problem Statement and Motivation
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Assumptions

• known actuator dynamics
• unknown static map
• existence of extremum (max)

Questions
• controller design
• stability
• convergence

Q(·)αt(x , t) = αxx (x , t)

Extremum seeking
with diffusion

compensation controller

y(t)θ(t) = α(D, t) Θ(t) = α(0, t)

26
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Extremum Seeking Control Loop – Gradient Case∗

Two possibilities for diffusion compensation:

U(t) = c
s + c

{
K
[
G(t) + Ĥ(t)

∫ D

0
(D − r)u(r , t)dr

]}
,

U(t) = c
s + c

{
K
[
G(t) + Ĥ(t)

(
θ̂(t)−Θ(t) + a sin (ωt)

)]}
Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira

* J. Feiling, S. Koga, M. Krstic, and T. R. Oliveira. “Gradient extremum seeking for static maps with actuation dynamics
governed by diffusion PDEs”. In: Automatica 95.7 (2018), pp. 197–206.

Q(·)αt(x , t) = αxx (x , t)

Diffusion
compensation

controller
1
s+

×

×
S(t)

θ̂(t) U(t)

G(t)

Ĥ(t)

M(t)

N(t)

y(t)θ(t) = α(D, t) Θ(t) = α(0, t)

27
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Extremum Seeking Control Loop – Newton Case

+

S(t)

1
s

×

M(t)

∂tα(x, t) = ∂xxα(x, t) Q(·)

×Γ̇ = ωrΓ − ωrĤΓ2

ΓG

N(t)

θ̂(t)

Θ(t) = α(0, t)

G(t)U(t)

y(t)

Ĥ(t)

z(t)Diffusion
Compensation

Controller

θ(t) = α(D, t)

Riccati Filter

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira

Actuation Dynamics
Θ(t) = α(0, t)

αt(x , t) = αxx (x , t), x ∈ [0,D]
αx (0, t) = 0
α(D, t) = θ(t)

Adaption

• Perturbation Signal S(t)
• Hessian estimate
• Error dynamics

28
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Extremum Seeking Control Loop – Newton Case

+

S(t)

1
s

×

M(t)

∂tα(x, t) = ∂xxα(x, t) Q(·)

×Γ̇ = ωrΓ − ωrĤΓ2

ΓG

N(t)

θ̂(t)

Θ(t) = α(0, t)

G(t)U(t)

y(t)

Ĥ(t)

z(t)Diffusion
Compensation

Controller

θ(t) = α(D, t)

Riccati Filter

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira

1 A. Ghaffari, M. Krstić, and D. Nešic. “Multivariable Newton-based extremum seeking”. Automatica 48.8 (2012).

2 M. Krstić and A. Smyshlyaev. “Boundary control of PDEs: A course on backstepping designs”. Vol. 16. Siam,
2008.

S(t) = 1
2 ae
√
ω
2 D sin

(
ωt +

√
ω

2 D
)

+ 1
2 ae−

√
ω
2 D sin

(
ωt −

√
ω

2 D
)S(t) = 1

2 ae
√
ω
2 D sin

(
ωt +

√
ω

2 D
)

+ 1
2 ae−

√
ω
2 D sin

(
ωt −

√
ω

2 D
)

Trajectory Generation Problem2

Perturbation Signal
S(t) = β(D, t)

βt(x , t) = βxx (x , t), x ∈ [0,D]
βx (0, t) = 0
β(0, t) = a sin(ωt)

Hessian Estimate1

Ĥ(t) = N(t)y(t)

N(t) = −8
a cos(2ωt)

29
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Ĥ(t) = N(t)y(t)

N(t) = −8
a cos(2ωt)

29



Outline Standard ES ES with hyperbolic PDEs ES with parabolic PDEs ES with Nonlinear PDEs ES with Multiple PDEs

Extremum Seeking Control Loop – Newton Case

+

S(t)

1
s

×

M(t)

∂tα(x, t) = ∂xxα(x, t) Q(·)

×Γ̇ = ωrΓ − ωrĤΓ2
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ODEut(x , t) = uxx (x , t)

u(x , t) ϑ(t)
u(0, t)

U(t)
u(D, t)

Propagated error dynamics:
ϑ̇(t) = u(0, t)

ut(x , t) = uxx (x , t), x ∈ [0,D]
ux (0, t) = 0
u(D, t) = U(t)

Estimation Error: θ̃(t) = θ̂(t)− θ∗

Error dynamics: ˙̃θ(t) = ˙̂θ(t) = U(t)

Propagated error: ϑ(t) = Θ̂(t)− θ∗

ϑ(t) := ᾱ(0, t)
ᾱt(x , t) = ᾱxx (x , t), x ∈ [0,D]
ᾱx (0, t) = 0
ᾱ(D, t) = θ̃(t)
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ᾱt(x , t) = ᾱxx (x , t), x ∈ [0,D]
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Diffusion Compensation Controller
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3 M. Krstić. “Compensating actuator and sensor dynamics governed by diffusion PDEs”. In: Systems & Control
Letters 58.5 (2009), pp. 372–377.

Control law:

U(t) = K̄ϑ(t) + K̄
∫ D

0
(D − r)u(r , t)dr

Backstepping transformation3:
w(x , t) = u(x , t)−

∫ x

0
q(x , r)u(r , t)dr − γ(x)ϑ(t)

q(x , r) = K̄ (x − r), γ(x) = K̄

Propagated error dynamics:
ϑ̇(t) = u(0, t)

ut(x , t) = uxx (x , t), x ∈ [0,D]
ux (0, t) = 0
u(D, t) = U(t)

Target system:
ϑ̇(t) = K̄ϑ(t) + w(0, t), K̄ < 0

wt(x , t) = wxx (x , t), x ∈ [0,D]
wx (0, t) = 0
w(D, t) = 0

31



Outline Standard ES ES with hyperbolic PDEs ES with parabolic PDEs ES with Nonlinear PDEs ES with Multiple PDEs

Diffusion Compensation Controller
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Control law:

U(t) = K̄ϑ(t) + K̄
∫ D

0
(D − r)u(r , t)dr

Average-based estimates
Gav(t) = [N(t)y(t)]av = Hϑav(t), Ĥav = H

Averaged control law:

Uav(t) = K̄ϑav(t) + K̄
∫ D

0
(D − r)uav(r , t)dr

K̄ = −K , K > 0

Uav(t) = −Kϑav(t)− K
∫ D

0
(D − r)uav(r , t)dr

zav(t) = ϑav(t) + Γ̃av(t)Hϑav(t)... linearization at Γ̃av = 0

Uav(t) = −Kzav(t)− K
∫ D

0
(D − r)uav(r , t)dr

K̄ = −K

Uav(t) = −Kzav(t)− K
∫ D

0
(D − r)uav(r , t)dr

Averaged-based control law: c > 0 and large!

U(t) = −K
[

z(t) +
∫ D

0
(D − r)u(r , t)dr

]
U(t) = c

s + c

{
−K

[
z(t) +

∫ D

0
(D − r)u(r , t)dr

]}
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Closed-loop system:
ϑ̇(t) = u(0, t)

ut(x , t) = uxx (x , t), x ∈ [0,D]
ux (0, t) = 0
u(D, t) = U(t)

U̇(t) = −cU(t)− cK
[

z(t) +
∫ D

0
(D − r)u(r , t)dr

]

Statement
• (ϑ, u) exponentially stable in H1
• (θ(t),Θ(t), y(t)) converge to a neighborhood of (θ∗,Θ∗, y∗)
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Stability & Convergence Theorem
Consider the closed-loop system. For a sufficiently large c > 0,
there exists some ω̄(c) > 0, such that ∀ω > ω̄, the closed-loop
system with states Γ̃(t), ϑ(t), u(x , t), has a unique exponentially
stable periodic solution in t of period Π := 2π/ω, denoted by
Γ̃Π(t), ϑΠ(t), uΠ(x , t), satisfying ∀t ≥ 0:(∣∣Γ̃Π(t)

∣∣2 +
∣∣ϑΠ(t)

∣∣2 +‖uΠ(x , t)‖2 +‖uΠ
x (x , t‖2 +

∣∣uΠ(D, t)
∣∣2)1/2

≤O (1/ω) .

Furthermore,
lim sup

t→∞
|θ(t)− θ∗| = O

(
|a|eD

√
ω/2 + 1/ω

)
,

lim sup
t→∞

|Θ(t)−Θ∗| = O (|a|+ 1/ω),

lim sup
t→∞

|y(t)− y∗| = O
(
|a|2 + 1/ω2).
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4 J. Hale, S.V. Lunel, et al. “Averaging in infinite dimensions”. In: J. Integral Equations Vol. 2.4 (1990), pp. 463–494

Averaging Theorem4 (short form)
Consider the infinite-dimensional system ż(t) = Γz(t) + J(ωt, z) (∗),
where Γ generates an analytic semigroup and J(ωt, z) satisfies
some smoothness conditions. Then, there exists a periodic solution
of (∗) zΠ(ω, t), with ‖zΠ‖ ≤ O(1/ω), which has the same stability
properties as the average solution zav = 0.

Exponential stability average closed-loop system:

Ψ(t) = |ϑav(t)|2 +
∫ D

0
u2

av(x , t)dx +
∫ D

0
(uav)2

x (x , t)dx + u2
av(D, t)

¯
ρΨ(t) ≤W (t) ≤ ρ̄Ψ(t) ⇒ Ψ(t) ≤ ρ̄

¯
ρ

e−µtΨ(0)

Exponential stability target system:

W (t) = ϑ2
av(t)
2 + a

2

∫ D

0
w2(x , t)dx + b

2

∫ D

0
w2

x (x , t)dx + d
2 w2(D, t),

Ẇ (t) ≤ −K
4 ϑ

2
av(t) + (c∗1 − c)w2(D, t) + (c∗2 − c)‖wx (t)‖2 − 1

512D5K 3 ‖w(t)‖2,

Ẇ (t) ≤ −µW (t), µ > 0, c > max {c∗1 , c∗2 }

Target system:
ϑ̇av(t) = − Kϑav(t) + w(0, t),

wt(x , t) = wxx (x , t) x ∈ [0, D],
wx (0, t) = 0,
wt(D, t) = − cw(D, t) + Kw(D, t)

− K 2

[∫ D

0

(
e−K(D−r) − 1

)
w(r , t)dr + e−KDϑav(t)

]
.

Linearized Average Closed-loop: d Γ̃av(t)
dt = −ωr Γ̃av(t)− ωr HΓ̃2

av(t)︸ ︷︷ ︸
quadratic

,

ϑ̇av(t) = uav(0, t),
∂tuav(x , t) = ∂xx uav(x , t), x ∈ [0, D],
∂x uav(0, t) = 0,

∂tuav(D, t) = −cuav(D, t)− cK
[
ϑav(t) +

∫ D

0
(D − r)uav(r , t)dr

]
.

Closed-loop System: ˙̃Γ = ωr (Γ̃ + H−1)[1− Ĥ(Γ̃ + H−1)],
ϑ̇(t) = u(0, t),

ut(x , t) = uxx (x , t), x ∈ [0,D],
ux (0, t) = 0,
u(D, t) = U(t),

U̇(t) = −cU(t)− cK
[

z(t) +
∫ D

0
(D − r)u(r , t)dr

]
.

Original closed-loop system

Average closed-loop system

Transformation into target system
with backstepping method

Exponential stability of the
target system

Lyapunov
Krasovskii
Method

Exponential stability of
the average system

Exponential stability of the original
system with the averaging theorem
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Ẇ (t) ≤ −K
4 ϑ

2
av(t) + (c∗1 − c)w2(D, t) + (c∗2 − c)‖wx (t)‖2 − 1

512D5K 3 ‖w(t)‖2,
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where Γ generates an analytic semigroup and J(ωt, z) satisfies
some smoothness conditions. Then, there exists a periodic solution
of (∗) zΠ(ω, t), with ‖zΠ‖ ≤ O(1/ω), which has the same stability
properties as the average solution zav = 0.

Exponential stability average closed-loop system:

Ψ(t) = |ϑav(t)|2 +
∫ D

0
u2

av(x , t)dx +
∫ D

0
(uav)2

x (x , t)dx + u2
av(D, t)

¯
ρΨ(t) ≤W (t) ≤ ρ̄Ψ(t) ⇒ Ψ(t) ≤ ρ̄

¯
ρ

e−µtΨ(0)

Exponential stability target system:

W (t) = ϑ2
av(t)
2 + a

2

∫ D

0
w2(x , t)dx + b

2

∫ D

0
w2

x (x , t)dx + d
2 w2(D, t),
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ϑ̇(t) = u(0, t),

ut(x , t) = uxx (x , t), x ∈ [0,D],
ux (0, t) = 0,
u(D, t) = U(t),

U̇(t) = −cU(t)− cK
[

z(t) +
∫ D

0
(D − r)u(r , t)dr

]
.

Original closed-loop system

Average closed-loop system

Transformation into target system
with backstepping method

Exponential stability of the
target system

Lyapunov
Krasovskii
Method

Exponential stability of
the average system

Exponential stability of the original
system with the averaging theorem

35



Outline Standard ES ES with hyperbolic PDEs ES with parabolic PDEs ES with Nonlinear PDEs ES with Multiple PDEs

Sketch of Proof

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira

4 J. Hale, S.V. Lunel, et al. “Averaging in infinite dimensions”. In: J. Integral Equations Vol. 2.4 (1990), pp. 463–494

Averaging Theorem4 (short form)
Consider the infinite-dimensional system ż(t) = Γz(t) + J(ωt, z) (∗),
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Simulation - Newton vs. Gradient

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira
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PDE Compensation for ES with Reaction-Advection-Diffusion Process

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira

Actuation dynamics
(Reaction-Advection-Diffusion):

Θ(t) = α(0, t)
αt(x , t) = εαxx (x , t) + bαx (x , t) +

λα(x , t), x ∈ [0, 1]
α(0, t) = 0
α(1, t) = θ(t)

Output:
y(t) = Q(n)(Θ) = y∗ + H

2 (Θ(t)−Θ∗)2

Dither Signals:
S(t) = e− b

2ε
∑∞

k=0
a2k (t)
(2k)! + b

2ε
a2k (t)

(2k+1)!
M(t) = Υn+1(t)
N(t) = Υn+2(t).

Estimate Error:
θ̃(t) = θ̂(t)− θ∗

Propagated Estimate Error:
ϑ(t) = Θ̂(t)−Θ∗

+

S(t)

1
s

×

M(t)

αt = εαxx + bαx + λα Q(·)

×Γ̇ = ωrΓ − ωrĤΓ2

ΓG

N(t)

θ̂(t)

Θ(t) = α(0, t)

G(t)U(t)

y(t)

Ĥ(t)

z(t)Compensador
para

EDP-RAD

θ(t) = α(D, t)

Filtro de Riccati
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PDE Compensation for ES with Reaction-Advection-Diffusion Process
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Estimated Error Error Dynamics:
ϑ̇(t) = ∂x u(0, t),
ut(x , t) = εuxx (x , t) + bux (x , t) + λu(x , t), x ∈ [0, 1]
ux (0, t) = 0,
∂x u(1, t) = U(t),

Control Law with Wave Process Compensation:

U(t) = c
s+c

{
−Ke− b

2ε

[
γ̄(1)z(t) +

∫ 1
0 e b

2ε y m̄(1− y)u(y , t)dy
]}

,K > 0 .

+

S(t)

1
s

×

M(t)

αt = εαxx + bαx + λα Q(·)

×Γ̇ = ωrΓ − ωrĤΓ2

ΓG

N(t)

θ̂(t)

Θ(t) = α(0, t)

G(t)U(t)

y(t)

Ĥ(t)

z(t)Compensador
para

EDP-RAD

θ(t) = α(D, t)

Filtro de Riccati
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PDE Compensation for ES with Reaction-Advection-Diffusion Process
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The proof of stability and convergence of the closed-loop system
follows the same steps as in Diffusion Process. Nevertheless,

lim sup
t→∞

|θ(t)− θ∗| = O
(
|a| exp

(√
ξ+ω
ε

)
+ 1

ω

)
,

lim sup
t→∞

|Θ(t)−Θ∗| = O
(
|a|+ 1

ω

)
and

lim sup
t→∞

|y(t)− y∗| = O
(
|a|2 + 1

ω2

)
.

+

S(t)

1
s

×

M(t)

αt = εαxx + bαx + λα Q(·)

×Γ̇ = ωrΓ − ωrĤΓ2

ΓG

N(t)

θ̂(t)

Θ(t) = α(0, t)

G(t)U(t)

y(t)

Ĥ(t)

z(t)Compensador
para

EDP-RAD

θ(t) = α(D, t)

Filtro de Riccati
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PDE Compensation for ES with Reaction-Advection-Diffusion Process: Simulation

H = −2, Θ∗ = 2, y∗ = 5, n = 1, ω = 10, a = 0.2, c = 20,
K = 0.1, ε = 1, b = 1, λ = 0.2 and K = 0.4

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira

42



Outline Standard ES ES with hyperbolic PDEs ES with parabolic PDEs ES with Nonlinear PDEs ES with Multiple PDEs

PDE Compensation for ES with Reaction-Advection-Diffusion Process: Simulation

H = −2, Θ∗ = 2, y∗ = 5, n = 1, ω = 10, a = 0.2, c = 20,
K = 0.1, ε = 1, b = 1, λ = 0.2 and K = 0.4
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PDE Compensation for ES with Reaction-Advection-Diffusion Process: Simulation

H = −2, Θ∗ = 2, y∗ = 5, n = 1, ω = 10, a = 0.2, c = 20,
K = 0.1, ε = 1, b = 1, λ = 0.2 and K = 0.4
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Application

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira

* JJ. Winkin, D. Dochain, and P. Ligarius. “Dynamical analysis of distributed parameter tubular reactors”. In: Automatica 36.3
(2000), pp. 349–361.

System

• xS : Substrate concentration
• xB : Biomass concentration

Goal
• Find and maintain the

optimal product rate

Tubular
bioreactor∗

Extremum seeking
with actuation dynamics
compensation controller

xB y(t)

θ(t) = xS

y

xB

(x∗B , y∗)

Static map
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Predictor Feedback for ESC with LWR Process - Application to Traffic Control

0 L

Zone C
Zone Bqin

qout

0 L

qin qout

VSL
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Predictor Feedback for ESC with Lighthill-Whitham-Richards (LWR) Process

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira

Actuation dynamics (LWR):
∂tρ+ ∂x (QC (ρ)) = 0 where

x ∈ [0, L], t ∈ [0,∞)
QC (ρ) = − vf

ρm
ρ2 + vf ρ

Boundary flow:
qin(t) = QC (ρ(0, t))
qout(t) = Q(ρ(L, t))

Locally:
qout(t) = q? + H

2 (% (t − D)− ρ?)2

Dither Signals:
S(t) = a sin (ω(t + D))
M(t) = 2

a sin (ωt)
N(t) = − 8

a2 cos (2ωt).
Estimate Error:

e(t) = %̂(t)− ρ?

@t⇢ + @x(⇢V (⇢)) = 0
⇢(L, t)

⇥

⇥
N(t)

M(t)

G

Ĥ

U(t)

qout(t)
QB(·)

LWR PDE model

S(t)

%(t)

+

⇢(0, t) = %(t)

%̂(t)
1

s

c

s + c k +

1

s
@t✏ + u@x✏ = 0

✏(0, t) = U(t)
⇥

Predictor feedback with Hessian estimate
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Predictor Feedback for ESC with Lighthill-Whitham-Richards (LWR) Process

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira

Theorem: Consider the closed-loop system. There exits c0 > 0 such that
∀c ≥ c0, there exists ω0(c0) > 0 such that ∀ω > ω0, the closed-loop system has
a unique exponentially stable periodic solution in period T = 2π

ω
, denoted by

eT (t − D),UT (τ),∀τ ∈ [t − D, t], satisfying ∀t > 0(
|eT (t − D)|2 + |UT (t)|2 +

∫ D
0 |U

T (τ)|2dτ
) 1

2
≤ O(1/ω). Furthermore,

lim
t→+∞

sup |%(t)− ρ?| = O(a + 1/ω) and

lim
t→+∞

sup |qout(t)− q?| = O(a2 + 1/ω2).

@t⇢ + @x(⇢V (⇢)) = 0
⇢(L, t)

⇥

⇥
N(t)

M(t)

G

Ĥ

U(t)

qout(t)
QB(·)

LWR PDE model

S(t)

%(t)

+

⇢(0, t) = %(t)

%̂(t)
1

s

c

s + c k +

1

s
@t✏ + u@x✏ = 0

✏(0, t) = U(t)
⇥

Predictor feedback with Hessian estimate
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Predictor Feedback for ESC with LWR Process - Simulation
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Predictor Feedback for ESC with LWR Process - Application
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Challenge - Multivariable Newton-based ES

The Newton algorithm effectively “diagonalizes” the map and allows “decentralized”
compensators for each control channel, whereas the Gradient algorithm has to perform
diffusion compensation of the cross-coupling of the channels.

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira

+

S(t)

1
s

×

M(t)
∂tαn(x, t) = ∂xxαn(x, t)

∂tαi(x, t) = ∂xxαi(x, t)

∂tα1(x, t) = ∂xxα1(x, t)

Q(·)

×Γ̇ = ωrΓ − ωrΓĤΓ

ΓG

N(t)

θ̂(t)

Θi(t) = αi(0, t)

Θ1(t) = α1(0, t)

GU(t)

y(t)

Ĥ

z
Multivariable

Diffusion
Compensation

Controller

θn(t) = αn(Dn, t)

θi(t) = αi(Di, t)

θ1(t) = α1(D1, t)

Θn(t) = αn(0, t)

...

...
...

...

...

...

Riccati Filter
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Multivariable ES for Distinct Classes of PDE Systems
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RAD Equation

PDE : ∂tαi (x , t)=εi∂xxαi (x , t)+bi∂xαi (x , t)+λiαi (x , t) , εi > 0 , bi ≥ 0 , λi ≥ 0
Boundary Control (Dirichlet) : Ui (t) = ci

s+ci

{
−kie

− bi
2εi

[
γ(1)zi (t) +

∫ 1
0 e

bi
2εi
σm(1− σ)u(σ, t)dσ

]}
,

γ(x) = cosh
(√

ξ
εi

x
)

+ bi
2εi

√
εi
ξ sinh

(√
ξ
εi

x
)
, ξ := b2

i /(4εi )− λi ≥ 0,

m(x − σ) = 1
εi

√
εi
ξ sinh

(√
ξ
εi

(x − σ)
)
, x ∈ [0, 1]

Trajectory Generation : Si (t) = e−
bi
2εi
∑∞

k=0
a2k (t)
(2k)! + bi

2εi
a2k (t)

(2k+1)! ,

a2k := ai
εki

sin(ωi t)
∑k

n=0
( k

2n
)
ξk−2nω2n

i + ai
εki

cos(ωi t)
∑k

n=0
( k

2n+1
)
ξk−2n−1ω2n+1

i

Wave Dynamics

PDE : ∂ttαi (x , t) = ∂xxαi (x , t), x ∈ [0,Di ]
Boundary Control (Neumann) : Ui (t) = ci

s+ci

{
c [−kiui (Di , t)− ∂tui (Di , t)] + ρ(Di )zi +

∫ Di
0 ρ(Di − σ)∂tui (σ, t)dσ

}
, ρ(s) = −ki [0 I]e

(
0 0
I 0

)
s

[0 I]T

Trajectory Generation : Si (t) = ai
ωi

sin(ωiDi ) sin(ωi t)

Delays

PDE : ∂tαi (x , t) = ∂xαi (x , t), x ∈ [0,Di ]
Boundary Control (Dirichlet) : Ui (t) = ci

s+ci

{
−ki

[
zi (t) +

∫ Di
0 ui (σ, t)dσ

]}
Trajectory Generation : Si (t) = ai sin(ωi (t + Di ))
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Challenge - Multivariable Newton-based ES (i = 1 , 2)
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1

2

1 4

y
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3
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4

0 2
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5

1
-1 0
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-2
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y(t)
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Conclusion
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Assumptions

• known actuator dynamics
• unknown static map
• existence of extremum

Results
• semi-model based
• exponential stability
• local convergence
• convergence speed

independent of the Hessian

Extensions
• multivariable Newton-based

ESC
• dynamic plants

(ODE+PDE)
• measurement dynamics

described by diffusion PDEs
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16th International 
Workshop on Variable 
Structure Systems 
VSS 2020
Pestana Rio Atlântica, Copacabana, 
Rio de Janeiro – RJ, Brazil
September 9-11, 2020

The 16th International Workshop on 
Variable Structure Systems will be held 
Wednesday September 9 through Friday 
September 11, 2020 at the Pestana Rio 
Atlântica, Copacabana, Rio de Janeiro – RJ, 
Brazil. It is the premier conference in vari-
able structure and sliding mode control 
bringing together people from academia 
and industry. It will feature three plenary 
talks as well as regular and poster sessions.

scope
� eory of sliding mode control and 
observation
• First order sliding mode
• Higher order sliding mode
• Chattering analysis
• Discrete time sliding mode
• Adaptive sliding mode
• Sliding mode based fault detection
• Networked control systems

Applications
• Automotive systems
• Hydraulic/pneumatic systems
• Electric drives and actuators
• Power electronics
• Multi-agent systems
• Mobile robots
• Process industry

important dates
• Paper submission site open:

February, 2020
• Deadline for paper submission:

April 13th, 2020
• Notifi cation of acceptance:

June 16th, 2020
• Final submission and registration open: 

June 23rd, 2020
• Deadline for fi nal submission and 

online registration: 
July 13th, 2020

paper submission
You are invited to electronically submit
the full version of your work following the
IEEE standards via the web page:
www.lee.uerj.br/~vss2020
vss2020@lee.uerj.br

Organizing 
Committee

general co-chairs 
Tiago Roux Oliveira 
Liu Hsu
Leonid Fridman 

program co-chairs 
Tiago Roux Oliveira 
José Paulo Vilela Soares Cunha 

local chair
Andrei Battistel

ieee technical committee  chair
Christopher Edwards

advisory committee
Bijnan Bandyopadhyay
Martin Horn 
Arie Levant 

Franck Plestan 
Sarah Spurgeon 
Elio Usai
Vadim Utkin
Xinghuo Yu

Technical Program
Committee
Andrzej Bartoszewicz
Michael Basin 
Igor Boiko

Denis Efi mov 
Antonella Ferrara
Leonid Freidovich
Katsuhisa Furuta 
Shihua Li
Zhihong Man
Jaime A. Moreno 
Alessandro Pisano 
Elisabetta Punta 
Johann Reger 
Markus Reichhartinger
Michael Ruderman
Yuri B. Shtessel 
Martin Steinberger

sponsored by:

CALL FOR PAPERS
international

workshop

2020
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Questions?

Prof. Tiago Roux Oliveira
Contact: tiagoroux@uerj.br
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