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Standard ES

Gradient Extremum Seeking
o(t)

o(t) . u(t) - G(t) é)

T

5(t)

Assumption: quadratic static map

y(t)=y* + 50— 0)
Gradient estimate:

G(t) = Zsin(wt)y(t)
Perturbation signals:

5(t) = asin(wt)

M(t) = 2 sin(wt)

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications

Prof. Tiago Roux Oliveira



Standard ES

Gradient Extremum Seeking
o(t)

o(t) . u(t) - G(t) é)

T

5(t)

Assumption: quadratic static map  Estimation error: §(t) = 6(t) — 6*

y(t)=y* + 50— 0)?
Gradient estimate:

G(t) = Zsin(wt)y(t)
Perturbation signals:

5(t) = asin(wt)

M(t) = 2 sin(wt)
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Standard ES

Gradient Extremum Seeking

o(t) (1)

» Of.
Q()
M(t)

o(t) . u(t) - G(t) é)

5(t)

Assumption: quadratic static map  Estimation error: §(t) = 6(t) — 6*

y(t) =y +5(0-0")?
Gradient estimate:

G(t) = Zsin(wt)y(t)
Perturbation signals:

5(t) = asin(wt)

M(t) = 2 sin(wt)

Error dynamics: 9N(t) = KM(t)y(t)
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Standard ES

Gradient Extremum Seeking

o(t) ¥(1)

- Q-
Q()

M(t)

o(t) . u(t) - G(1) é)

T

5(1)

~

Assumption: quadratic static map  Estimation error: 8(t) = 4(t) — 6*

y(B)=y"+3(0-0) Error dynamics: 9( ) = KM(t)y(t)
Gradient estimate: _ L H in(w

G(t) = 2sin(wt)y(t) KM(t) [y* + 4(0(t) + asin(wt))?]
Perturbation signals:

5(t) = asin(wt)

M(t) = 2 sin(wt)
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Standard ES

Gradient Extremum Seeking

o(t) ¥(1)

» Of.
Q()
M(t)

o(t) . u(t) - G(1) é)

T

5(1)

Assumption: quadratic static map  Estimation error: §(t) = 6(t) — 6*

— ¥ H _ O*)2 -
y(t) =y +5(0-6) Error dynamics: 6(t) = KM(t)y(t)

Gradient estimate: — KM(t) [y* + B(0(t) + asin(wt))?
G(t) = 2sin(wt)y(t) ()b + 2000 (oY)
Perturbation signals:
5(t) = asin(wt)
M(t) = 2 sin(wt)

Average error dynamics:
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Outline Standard ES ES w hyperbolic PDEs ES with parabolic PDEs ES with Nonlinear PDEs ES with Multiple PDEs

Recap: Averaging

Consider the original system

z = f(wt,z), z(0) = z, (1)

and the average system

Zay = av(zav)a Zav(o) = Zav,0, e Zav = -,-/ T Zav

If z,, = 0 is an exponentially stable solution, then there exists
@ > 0 such that for all w > @

12(t) = zav(t)]| < O(1/w), ¥t €0,00),

Furthermore, (1) has a unique exponentially stable, T-periodic
solution Z(t,1/w) with the property ||z(t,1/w)| < O(1/w).

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira



Standard ES

Gradient Extremum Seeking

o(t) (1)

» Of.
Q()
M(t)

o(t) . u(t) - G(t) é)

T

5(t)

Assumption: quadratic static map Estimation error: 6(t) = 6(t) — 6*(t)
K H _ pA*)2 -
y(t) =y +5(0-6) Error dynamics: 6(t) = KM(t)y(t)
Gradient estlzm_ate: = KM(t) [y* + B(0(t) + asin(wt))?]
G(t) = < sin(wt)y(t) _
Average error dynamics: K = KH

Perturbation signal: Gu(t) = Riln(t)

5(t) = asin(wt)
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Standard ES

Newton-based Extremum Seeking
0 y

- — H Y
I = w, I —w, Hr2—()«—N(t)

Hessian estimate: Riccati Filter (error):
H(t) = N(t)y(t) Fav(t) = Tay(t) — H7!
Demodulating Signal: Average error dynamics: K = —K < 0
N(t) = — & cos(2wt) Ha(t) = H
Auxiliary Variable: Fav(t) = H!
& — o~ 7
z(t) =T (t)G(1) O (t) = K (t)
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Standard ES

Gradient Extremum Seeking for Dynamic (ODE) Systems

0 i=f(r,a(,0) y
y = h(z)

€ VLA I N S R e P21
s s+uw S+ wy

asinwt
Assumptions:
f(t,a(x,8)) = 0 if and only if x = /().

® For each 0 € R, the equilibrium x = /(#) of the system is locally
exponentially stable with decay and overshoot constants uniform in 6.

v = Q) = ho I(0).
® There exists 0* € R such that (ho /) (6*) =0 and (ho I)'(6*) < 0.

Analysis Tools: Averaging and Singular Perturbation 8
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Standard ES

Gradient Extremum Seeking for Dynamic (ODE) Systems

0 i=f(r,a(,0) y
y = h(z)

e 9 Eolg w y=n| _s
e s+ S+ wy

asinwt

® Theorem 1: There exists a ball of initial conditions around the point
(x,0,€,m) = (1(6*),0,0,hol(6*)) and constants @, and 3 such that
for all w € (0,®), § € (0,8), and a € (0, 3), the solution
(x(t),0(t),£(t) ,n(t)) exponentially converges to an
O(w + ¢ 4 a)-neighborhood of that point. Furthermore, y(t) converges to
an O(w + d + a)-neighborhood of ho [(6%).
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ES with hyperbolic PDEs

Predictor Feedback for ES with Sensor Delays

[ 901 Q(0) =57 y
= el

e e

L L !
H

Delayed Output: Dither and Demodulation Signals:

y(t) = Q(6(t — D)) S(t) = asin(wt)
Gradlent Estlmate M(t) = 2 sin(w(t — D))

0l L [, M(0)ydo = H,, N(t) = — & cos(2w(t — D))

Q. = (My)av = H0,,(t — D) Averaging Analysis (without prediction):
Hessian Estimate: u(t) = KQ’(t)

L N(o)ydo = H

X 0(t) = U(t), 6., = kHO,,(t — D
Q = (Ny)a = H 8) = Ult) (£=0)

é/av(t) = HU,,(t — D) 10
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ES with hyperbolic PDEs

Predictor Feedback for ES with Sensor Delays

[ 901 Q(0) =57 y
= le__J

|
; Predictor of Q'((t Y] l
; 0 E_IPE | @ :Q®
I o
) [1] O"é*“”—O

sin(wt

Delay PredictionAFeedback:

Uav(t) = KQ‘;v(t + D)
Future State: R .

Q,(t+ D)= Q,,(t) + H [,_p Us(0)do
Filtered Predictor Feedback Law:

ue) = K @)+ Qo) [ p umar] }

s+c
Lag Filter: Hale and Lunel’s Averaging Theorem + Inverse optimality

11
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ES with hyperbolic PDEs

Predictor Feedback for ES with Sensor Delays

Qo
[ [o01 2(0) =7 Y
2sin(w(t — D))

o
N0 E_TE ! O : ri' @
2 H—o-0-2—0

sin(wt

—5 cos(2w(t — D))

® Theorem: Consider the control system in the Figure with delayed output and D > 0 being a simple scalar.
There exist~c* > 0 such that, Vc > ¢*, w™ > 0 such that, Yw > w™, the closed-loop delayed system
with state 6(t — D), U(o), Vo € [t — D, t], has a unique exponentially stable periodic solution in t of
period M := 27 /w, denoted by 6™ (t — D), U™ (0), Vo € [t — D, t], satisfying, V > 0:

n 2 n 2 ' N e
|9 (th)| +|u (th)| ¥ |u (T)| dr < O(1/w).
t—D

Furthermore, lim¢_s 4 o sup [6(t) — 6% | = O(a+ 1/w) and
lime s 400 sup [y(t) — y*| = O(a% + 1/w?). 12
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ES with hyperbolic PDEs

Predictor Feedback for ES with Delays - Simulation
Q(F) =5— (6 —2)2, (6%,y*) = (2,5), H= —2 and D = 5s
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ES with hyperbolic PDEs

Predictor Feedback for ES with Delays - Simulation

—Delay free
— Compensated D

t[s] 14
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Outline Standard ES ES with hyperbolic PDEs ES with parabolic PDEs ES with Nonlinear PDEs ES with Multiple PDEs

Predictor Feedback for ES with Delays - Application

Neuromuscular Electrical Stimulation (NMES)
Challenges for Modeling and Actuation

Patients Variability

o Different kinds of lesion (parametric/relative degree
uncertainties)

® Patient response changes over time (time-varying system)
® Saturation, dead-zone and fatigue (nonlinear phenomena)
® Time delays (small but present)

® Gravity action (disturbances for upperward movements)

® Hybrid bidirectional actuator (biceps and triceps)

15
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ES with hyperbolic PDEs

Predictor Feedback for ES with Delays - Application

Assistive Robotics for Stroke Patients

® Motor disorder
® Spasticity (hypertonia)
® Physiotherapy

Rehabilitation
® Passive or active movement

® (Closed-loop feedback aids patients’ recovery

® Design control laws for NMES

16
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ES with hyperbolic PDEs

Predictor Feedback for ES with Delays - Application
Adaptive Control Strategy

. Biceps /
ControlIer]-»[Shmula’(o%—»[Tri ceps

Measured
Angle

Which Controller? Adaptive Control!

® Conventional Adaptive Control (control parametrization)
® Model Reference Adaptive Control (delays/relative degree obstacles)

® PID with Extremum Seeking for adaptation: J(0) = Tito ftOT e (t)dt

Automatic controller tuning: adaptation

® May solve the huge gap between healthy volunteers and stroke patients .
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ES with hyperbolic PDEs

Predictor Feedback for ES with Delays - Experiment 1

—Eloow Angle () --- Reference r(f [——Kp ==K —-Kd|

T T Parameter Evolution

Iterations (k)

: Lk N L ek =600
2 4 60 80 100 120 140 160 Cost Function Evolution
Time (5) 02
—Biceps — Triceps 0.15
z

& T T F— T A=2IN S

= (i ]

N 4 0.05

g '||

3 L | I L I L 19 o

0 2 % E) 8 100 120 140 160 o 1 2 3 4

Time (s)

Iterations (k)
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ES with hyperbolic PDEs

Predictor Feedback for ES with Delays - Experiment 2

— Elbow Angle y() - - -Reference ()

Time (s)

—Biceps — Triceps

C:vrelll(m:)
e
e
L=t |
=
—
N

Time (s)

Extremum Seeki

g for Systems Described by Partial Differential Equations and Its Applications

[=e=Kp ==Ki = ~Kd|

Parameter Evolution

Iterations (k)

Cost Function Evolution

1 2 3
Iterations (k)

Prof. Tiago Roux Olivei

19




ES with hyperbolic PDEs

PDE Compensation for ES with Wave Process

0(t) = ax (D, 1) |a"(z,t):a”(zyt)| Ot) = az(0,1) T ) 1 v®
M(t)
G )\
~ é(f) m U(t) Compensador o
\? (| EDP da Onda H(t) ~
1
S(t)
N(t)
Actuation dynamics (Wave): Dither Signals:
O(t) = 0x(0, t) S(t) = 2 sin(wD)sin(wt)
6t(ta(x), t) = Oxa(x,t), x€[0,D]  M(t) = 2sin(wt)
a(0,t) =0 N(t) = — & cos(2wt
dxa(D, t) = 0(t) (t) = — 5 cos(2ut)

Estimate Ert'l\or:
0(t) =0(t) — 0*

Propagated Estimate Error:

A

I(t) = O(t) — ©*

Output map:
y(t) = Q(©) = y* + §(O(t) — )

20
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ES with hyperbolic PDEs

PDE Compensation for ES with Wave Process

0(t) = au(D,t) ] O =a:(0.)) [ ()

I o (7, t) = oo (@, 1) I I Q) I
M(t)
<0 ,L
N X
o o(t) ITI U(t) Compensador R ~
T u EDP da Onda H(t) A
1
S(t)
N(t)

Estimated Error Dynamics:
J(t) = d,u(0, t)
Onu(x,t) = Ou(x, t), x€]0,D]
u(0,t) =0
Oxu(D, t) = U(t)
Control Law with Wave Process Compensation:
Ut) = = {a [Kﬁ/(r)u(a t)—8,u(D, t)} +A(D)KG(t)

+KH(t) fOD p(D — 0)0ru(o, t)do “
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ES with hyperbolic PDEs

PDE Compensation for ES with Wave Process

o ZoulDt) ] 0 m a0 o]

I o (7, t) = oo (@, 1) I I I

M(t)

<0 ,L

N X
o o(t) ITI U(t) Compensador R ~

T u EDP da Onda H(t)

©

st f
N(t)

Theorem: Consider the closed-loop system in the figure above. For a sufficiently large
c > 0, there exists some &(c) > 0, such that Vw > @, the closed-loop system with
states ¥(t), u(x, t), has a unique exponentially stable periodic solution in t of period
M := 27 /w, denoted by 9"(t), u™(x, 1), satisfying Vt > 0:

/
(I + o] + @] + o .07) < 0110

Furthermore, limsup [0(t) — 0*| = O (a/w + 1/w), limsup |©(t) — ©*| = O (a + 1/w)
t—o00 t—oo 22
and limsup|y(t) — y*| = O (a + 1/w?).
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ES with hyperbolic PDEs

PDE Compensation for ES with Wave Process - Simulation

H=-02,0*=2 y*"=5 D=1 w=10,a=0.2, c =10,
c=05and K=0.4

0 5 10 15 20 25 30
Tempo (5)

23
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ES with hyperbolic PDEs

PDE Compensation for ES with Wave Process -
Application

Drill lines

Travelling block

Top drive

Drill string

Drill floor

24
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ES with parabolic PDEs

Problem Statement and Motivation

Static map Q(©)

Diffusion process Yy o (0%,y")

o(t) /\/\ o(t)

x=D x=0

y(t)

1 ® mixing of chemical

|
. substances
|
|

® ((t) : input/actuator
® y(t): output

25
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ES with parabolic PDEs

Problem Statement and Motivation

Static map Q(©)

Diffusion process

oo /\/\_ o) 7 0

Controller <

Semi-model-based control concept
System Signals

® 4(t) : input/actuator

® y(t): output
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Outline Standard ES ES with hyperbolic PDEs ES with parabolic PDEs ES with Nonlinear PDEs ES with Multiple

Problem Statement and Motivation

0(t) = a(D, o(t) = «(0,
M,’ ar(x, t) = au(x, t) } () ( t)~ Q) y(t)

Extremum seeking
with diffusion -
compensation controller

® known actuator dynamics ® controller design
® unknown static map ® stability
® existence of extremum (max) ® convergence

26
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ES with parabolic PDEs

Extremum Seeking Control Loop — Gradient Case*
=« 9 7040
LR | pymryermmey LU Ay IR
M(t)

é(t) . U(t) Diffusion
4@ compensation N
T controller H(t)
S(t)

Two possibilities for diffusion compensation:

U(t):sjc{Kl +Ht)/ D — r)u( )H

u(t)= {K[6(e)+ H(t) (0(t) - ©(t) + asin (wt)) | }

* . Feiling, S. Koga, M. Krstic, and T. R. Oliveira. “Gradient extremum seeking for static maps with actuation dynamics
governed by diffusion PDEs”. In: Automatica 95.7 (2018), pp. 197-206.

27
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ES with parabolic PDEs

Extremum Seeking Control Loop — Newton Case

0(t) = a(D,t) O(t) = a(0,t) y(t)
007, t) = Oppar(w, 1) [0}
M(t)
b m v [ ™ o o d
T Iil Controller T ~
(

s PR O
r

Riccati Filter

N(t)
Actuation Dynamics Adaption

@(t) = OZ(O, t) ® Perturbation S|gna| S(t)
el 8) ~ ambot) e 0.0 ® Hessian estimate
ax(07 t) = O .
a(D,t) =0(t) ® Error dynamics

28
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ES with parabolic PDEs

Extremum Seeking Control Loop — Newton Case

0(t) = a(D,t) oGl =0l l) O(t) = a(0,t) @ y(t)
M(t)
9(t) m U(t) Diffusiog 2(t) — G(t) /1\
+ = Compensation I'G X
T Iil Controller T ~
(

s PR O
r

Riccati Filter
N(t)

A(t) = N(t)y(t)
N(t) = —gcos(2wt)

29
1A Ghaffari, M. Krsti¢, and D. Nesic. “Multivariable Newton-based extremum seeking”. Automatica 48.8 (2012).
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ES with parabolic PDEs

Extremum Seeking Control Loop — Newton Case

0(t) = a(D,t) O(t) = a(0,t) W y(t)
| AN |
M(t)
é(t) m U(t) Diffusiog 2(t) — G(t) /1\
+ = Compensation I'G X
T Iil Controller T ~
S(t)

H
PR O
r

Riccati Filter
Trajectory Generation Problem?

Perturbation Signal

S(t) = ﬂ(D, t) S(t) = lae\/gD sin (wt + gD)
Bi(x, £) = Bu(x,t), x €10, D] 2 2

Bx(0,£) =0 + 5o VEsn (wt - \/50)
B(0, t) = asin(wt)

2 M. Krsti¢ and A. Smyshlyaev. “Boundary control of PDEs: A course on backstepping designs”. Vol. 16. Siam,

N()

29
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ES with parabolic PDEs

Extremum Seeking Control Loop — Newton Case

0(t) = a(D,t) O(t) = a(0,t) W y(t)
| AN |
M(t)
é(t) m U(t) Diffusiog 2(t) — G(t) /1\
+ = Compensation I'G X
T Iil Controller T ~
S(t)

H
PR O
r

Riccati Filter
Trajectory Generation Problem?

Perturbation Signal

S(t) = ﬂ(D, t) S(t) = lae\/gD sin (wt + gD)
Bi(x, £) = Bu(x,t), x €10, D] 2 2

Bx(0,£) =0 + 5o VEsn (wt - \/50)
B(0, t) = asin(wt)

2 M. Krsti¢ and A. Smyshlyaev. “Boundary control of PDEs: A course on backstepping designs”. Vol. 16. Siam,

N()

29
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ES with parabolic PDEs

Extremum Seeking Control Loop — Newton Case

0(t) = a(D,t) oGl =0l l) O(t) = a(0,t) @ y(t)

M(t)

b m v [ ™ o o d

T Iil Controller T e
(

st [T X Q)
T

Riccati Filter
Trajectory Generation Problem?

Perturbation Signal
S C—

S(1) = B(D. 1) B
Be(x,t) = Bulx,1), x €[0,D] )= MO
Bx(0,t) =0 N(t) = - cos(2wt)
B(0, t) = asin(wt) b
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ES with parabolic PDEs

Extremum Seeking Control Loop - Error Dynamics
Estimation Error: (t) = (t) — 6*

Error dynamics: §(t) = é(t) = U(t)

30
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ES with parabolic PDEs

Extremum Seeking Control Loop - Error Dynamics
Estimation Error: (t) = (t) —
Error dynamics: §(t) = é(t) = U(t)
Propagated error: 9(t) = ©(t) — 6*
0(t) == a(0, t)
ai(x, t) = axx(x t), x€10,D]
ax (0, t)
a(D, 1)

()

30
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ES with parabolic PDEs

Extremum Seeking Control Loop - Error Dynamics
Estimation Error: (t) = (t) —

Error dynamics: §(t) = é(t) = U(t)

Propagated error: 9(t) = ©(t) — 6* Propagated error dynamics:
I(t) == a(0, t) I(t) = u(0, t)
ai(x, t) = axx(x t), x€10,D] ue(x, t) = Uxx(X t), xe€]0,D]
ax(0,1) = ue(0,t) =
a(D, t) = ( ) u(D, t) = U( )
u(x, t) 9(t)

U(t)&» Ue(x, £) = te(x, £) %—>

30
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ES with parabolic PDEs

Diffusion Compensation Controller

Propagated error dynamics: Target system:

J(t) = u(0,t) J(t) = KI(t) + w(0,t), K <0
ur(x,t) = uXX(x t), x€]0,D] we(x, t) = wi(x,t), x €[0,D]
ue(0,t) = wy(0,t) =0

u(D, ):U() w(D,t) = 0

Backstepping transformation?:
w(x,t) = u(x,t) — / q(x, ru(r, t)dr — v(x)9(t)
0
gix,r)=K(x—r),  (x)=K
Control law:

D
U(t) = Ko(t) + R/o (D= r)u(r,t)dr

3 M. Krsti¢. “Compensating actuator and sensor dynamics governed by diffusion PDEs". In: Systems & Control 31
Letters 58.5 (2009), pp. 372-377.
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ES with parabolic PDEs

Diffusion Compensation Controller

Control law:

D
U(t) = Ko(t) + R/o (D= r)u(r,t)dr

Average-based estimates

Gav(t) = [N(t)y(1)],, = Hau(2), Fhy =¥
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ES with parabolic PDEs

Diffusion Compensation Controller

Control law:

D
U(t) = Ko(t) + R/ (D= r)u(r,t)dr
0
Gau(t) = [N(t)y(t)],, = HOa(2), H., =H

Averaged control law:

Un(£) = Ko (£) + R/OD(D  PYun(r t)dr

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira



ES with parabolic PDEs

Diffusion Compensation Controller

Control law:

D
U(t) = Ko(t) + R/ (D= r)u(r,t)dr
0
Gau(t) = [N(t)y(t)],, = HOa(2), H., =H

Averaged control law: K =—-K, K >0
D
Un(£) = — Kia(t) — K/ (D — Pun(r, t)dr
0
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ES with parabolic PDEs

Diffusion Compensation Controller

Control law:

D
U(t) = Ko(t) + R/o (D= r)u(r,t)dr

Average-based estimates

Gav(t) = [N(t)y(1)],, = Hau(2), H.y = H

‘

Averaged control law:
Zav(t) = Yav(t) + I av (t)HOav (t)... linearization at fav =0

Ua(t) = —Kza(t / (D = r)uay(r, t)dr
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ES with parabolic PDEs

Diffusion Compensation Controller

Control law:

D
U(t) = Ko(t) + R/o (D= r)u(r,t)dr

Average-based estimates

Ga(t) = [N(t)y(t)],, = HOa(t),  Fa=H
Averaged control law:
D
Ua(t) = —Kzy(t) — K/ (D = r)ua(r, t)dr
0

Averaged-based control law: ¢ > 0 and large!

U(t) = —K | z(t) —l—/o (D= r)u(r, t)dr}
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ES with parabolic PDEs

Diffusion Compensation Controller

Control law:

D
U(t) = Ko(t) + R/o (D= r)u(r,t)dr

Average-based estimates

Gav(t) = [N(t)y(1)],, = Hau(2), Fhy =¥

Averaged control law:

D
Ua(t) = =Kz (t) — K/o (D = r)ua(r, t)dr

Averaged-based control law: ¢ > 0 and large!

u(t) = SJCFC {—K Z(t)+/o (D= ryu(r, t)dr]} 3
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ES with parabolic PDEs

Closed-loop Stability
Closed-loop system:
d(t) = u(0, t)

ur(x,t) = uXX(x t), x€[0,D]
ux(0,t) =
u(D, t) = U( )

U(t) = —cU(t) — cK

z(t)+/0 (D—r)u(r,t)dr]

® (9, u) exponentially stable in H;
® (A(t),O(t),y(t)) converge to a neighborhood of (6*, ©*, y*)
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Outline Standard ES ES with hyperbolic PDEs ES with parabolic PDEs ES with Nonlinear PDEs ES with Multiple PDEs

Closed-loop Stability

Stability & Convergence Theorem

Consider the closed-loop system. For a sufficiently large ¢ > 0,
there exists some @(c) > 0, such that Vw > @, the closed-loop
system with states [ (t), 9(t), u(x, t), has a unique exponentially
stable periodic solution in t of period I := 27 /w, denoted by
FM(t),0"(t), u"(x,t), satisfying Vt > 0:

(IFT @+ M+ 16, O+ a0, e+ 070, ) <0 (/).

Furthermore,
limsup |0(t) — 6% = O (|a|eD\/“/2 + l/w) ,
t—o0o

limsup [O(t) — 0% = O (|a| + 1/w),

t—00
Iiin sup |y(t) — y*| = O (|a]* + 1/w?).
—00

34
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ES with parabolic PDEs

Sketch of Proof

’ Original closed-loop system ‘

Closed-loop System: T = w, (I + H™1)[1 — AT + H™Y)],

(t) = u(0, t),
ur(x, t) = uxx(x t), xe€]0,D],
u(0,t) =
t) =

u(D, U()

U(t) = —cU(t) — cK

D
z(t)—l—/o (D —r)u(r, t)dr} . 35
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ES with parabolic PDEs

Sketch of Proof

’ Original closed-loop system ‘

Y

’ Average closed-loop system ‘

Linearized Average Closed-loop: ~ lex(®) — —w,Fay(t) — w, HI (1),
—_———

dt

. quadratic

19av(t) = uav(Oa t),
atuav(X7 t) = 8XXuaV(X7 t)7 X e [O’ D]7
Oxuay(0,t) =0,

atuav(D7 t) = —CUaV(D, t) —cK

D
Pav(t) —|—/0 (D — r)uay(r, t)dr] .

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira



ES with parabolic PDEs

Sketch of Proof

’ Original closed-loop system ‘

Y

’ Average closed-loop system ‘

A,

Transformation into target system
with backstepping method

Target system:

Dav(t) = — Kay(t) + w(0, t),
we(x, t) = WXX(X t) xe€][0, D],
wy (0, 1) =

)=

we(D, t — CW(D t) + Kw(D, t)

D
_K? / (e 1) w(r, t)dr + e P (1) .
0
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ES with parabolic PDEs

Sketch of Proof

’ Original closed-loop system ‘

Y

’ Average closed-loop system ‘

Lyapunov
Y Krasovskii
Transformation into target system Method _| Exponential stability of the
with backstepping method target system
Exponential stability target system:
92,(t) a [P b [P d
W(t) = % + 5 w?(x, t)dx + > w?(x, t)dx + §W2(D, t),
0 0

35
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ES with parabolic PDEs

Sketch of Proof

’ Original closed-loop system ‘

Y

’ Average closed-loop system ‘

Lyapunov
Y Krasovskii
Transformation into target system Method _| Exponential stability of the
with backstepping method target system
Exponential stability target system:
92,(t) a [P b [P d
W(t) = Va(t) + = w?(x, t)dx + = w?(x, t)dx + =w?(D, t),
2 2 Jo 2 J 2
A K 2 2 * 2 1 2
W(t) < _Zﬁav(t) + (cf = )w(D, 1) + (& — o) [wx(t) I — WHWU)H )

35
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ES with parabolic PDEs

Sketch of Proof

’ Original closed-loop system ‘

A,

’ Average closed-loop system ‘

Lyapunov
Y Krasovskii
Transformation into target system Method _| Exponential stability of the
with backstepping method target system
Exponential stability target system:
92,(t) a [P b [P d
W(t) = Va(t) + = w?(x, t)dx + = w?(x, t)dx + =w?(D, t),
2 2 Jo 2 J 2
A K 2 2 * 2 1 2
W(t) < _Zﬁav(t) + (cf = )w(D, 1) + (& — o) [wx(t) I — WHWU)H )
W(t) < —pW(t), p>0, c>max{c,c}
35
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ES with parabolic PDEs

Sketch of Proof

Original closed-loop system ‘

Exponential stability of

Y
the average system

’ Average closed-loop system k

Lyapunov
Y Krasovskii
Transformation into target system Method _| Exponential stability of the
with backstepping method target system

Exponential stability average closed-loop system:
D

W(t) = [9a(t)? +/0 u?,(x, t)dx +/0 (ua)3(x, t)dx + u2,(D, t)

pY(t) < W() < pv(t) = W(t)< ge_’“\ll(O)

35
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ES with parabolic PDEs

Sketch Of Proof Exponential stability of the original

system with the averaging theorem

’ Original closed-loop system k

Exponential stability of

Y
the average system

’ Average closed-loop system k

Lyapunov
Y Krasovskii
Transformation into target system Method _| Exponential stability of the
with backstepping method target system

Averaging Theorem* (short form)

Consider the infinite-dimensional system z(t) = I'z(t) + J(wt, z) (),
where I generates an analytic semigroup and J(wt, z) satisfies

some smoothness conditions. Then, there exists a periodic solution

of (¥) z™M(w, t), with ||z2"]| < O(1/w), which has the same stability
properties as the average solution z,, = 0. .

4 J. Hale, S.V. Lunel, et al “Averaging in infinite dimensions”. In: J. Integral Equations Vol. 2.4 (1990), pp. 463—-494
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Simulation

Output static map

time [s]

Hessian Estimate (filtered)

ES with parabolic PDEs

Estimated Optimal Input

T T

) SE——

<
| |
0 10 20 30
time [s]
0(t) vs. O(t)
3
2
s
S 1
@

— 0(t)

0 10 20
time [s]

30

Gradiant Estimate (filtered)

)] SEE————

|

0 10 20 30
time [s]
Controller Qutput
0.4
0.3 -
5 0.2 —
0.1 —
| |
00 10 20 30
time [s] 36
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ES with parabolic PDEs

Simulation - basic ES vs. diffusion compensation ES

0
—200

= —a00 =

> =
—600

—800 |- .
I R | |
0 20 40 60 80 100 % 100 200 300

o(1), 0(t)
o(t), 0(t)

1 === 0
— ()
— 0(1) — 0(1)
—30 —— 0 : :
0 20 40 60 80 100 0 100 200 300
time [s] time [s]
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ES with parabolic PDEs

Simulation - Newton vs. Gradient

5.5

4 —— Gradient| |
——Newton
—--y*=5
35 : :
0 10 20 30

Time [sec]

38
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ES with parabolic PDEs

PDE Compensation for ES with Reaction-Advection-Diffusion Process

@ y(t)
M(t)
é(f) m U@ Comg:?;ador 2(t) o G(f)KI\
T s EDP-RAD
S(t)
Actuation dynamics Dither Signals:
(Reaction-Advection-Diffusion): S(t)=e" £ Zk . EEZleEt) + 23(;:(_?)'
o(t) = a(0, t) M(t) = T (t) '
Oét(X, t) = eaxx(x, t')-i—bO[X(X7 f)+ N(t) _ Tn+2(t).
)\a(x t) xe [0 1] Estimate Error:
( £) = 0(t) A(t) = 0(t) —
Output: Propagated Estimate Error:
utput: A o
y(t)= QW(©) =y + H(e(r) —orp N =0()-8 »
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ES with parabolic PDEs

PDE Compensation for ES with Reaction-Advection-Diffusion Process

0(t) = a(D,t) o(t) = a(0,t) W y(t)
=
M(t)
é(i) m U@ Comg:?;ador 2(t) o G(1) fl\
|ﬂ EDP-RAD
t

Estimated Error Error Dynamics:
J(t) = du(0, t),
u(x, t) = euxx(x, t) + buy(x, t) + Au(x, t), x€][0,1]
UX(O’ t) =0,
Ocu(l,t) = U(t),
Control Law with Wave Process Compensation:

u(t) = == {_Ke—i [3(1)2(15) + [Letym(l - y)uly, t)dy” K>0.
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ES with parabolic PDEs

PDE Compensation for ES with Reaction-Advection-Diffusion Process

0(t) = a(D,t) o(t) = a(0,t) W y(t)
=
M(t)
é(i) m U@ Comg:?:ador 2(t) o G(1) fl\
1 |ﬂ EDP-RAD ~
S(t)
Filtro de Riccati t
N(t)

The proof of stability and convergence of the closed-loop system
follows the same steps as in Diffusion Process. Nevertheless,

imsup [0(6) ~ 07 = 0 (Ialexp (/52 ) + 2),
t—0o0

limsup[©(t) — ©*| = O (|a| + 1) and
t—00

limsup |y(t) — y*| = O (|a* + &).
t—o00

41

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications Prof. Tiago Roux Oliveira



ES with parabolic PDEs

PDE Compensation for ES with Reaction-Advection-Diffusion Process: Simulation

H=-20"=2 y*=5n=1 w=10,a=0.2, c =20,
K=01l,e=1,b=1,A=02and K=0.4

Output Static Map y(t) Estimated Parameter 0
6 T T
""" v
al i
= ] g
0 | 0 e
| I —
0 10 20 30 0 10 20 30

time [s] time ]

42
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ES with parabolic PDEs

PDE Compensation for ES with Reaction-Advection-Diffusion Process: Simulation

—2,0=2,y*"=5n=1 w=10,a=0.2, c =20,

H =
K=01le=1,b=1,A2=02and K=0.4
Gradiant Estimate (filtered) G(t) Hessian Estimate (filtered) ﬁf(t)
1 T
0 -
o< -1 i
=l e
0 10 20 30 0 10 20 30
time [s] time [s]
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ES with parabolic PDEs

PDE Compensation for ES with Reaction-Advection-Diffusion Process: Simulation

H=-20"=2 y*=5 n=1 w=10, a=0.2, c =20,
K=01le=1b=1A=02and K=04

0(t) vs. O(t) Controller Output U(t)

0.6 T
2
. 0.4 i
s 1 =
= S 02
©]
’ —e()
—0(t) 0
_10 10 20 30 0 10 2‘0 30
time [s]

time 8]

44

Prof. Tiago Roux Oliveira

Extremum Seeking for Systems Described by Partial Differential Equations and Its Applications



ES with parabolic PDEs

Application

6(1‘) = Xs

Static map

)

Tubular

bioreactor*
y(t)

Extremum seeking
with actuation dynamics |«
compensation controller

® x5 : Substrate concentration ® Find and maintain the

® x5 : Biomass concentration optimal product rate

* 0. Winkin, D. Dochain, and P. Ligarius. “Dynamical analysis of distributed parameter tubular reactors”. In: Automatica 36.3 45

(2000), pp. 349-361.
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ES with Nonlinear PDEs

Predictor Feedback for ESC with LWR Process - Application to Traffic Control

Zone B ,qé'g

—

Gin

= Zone C

i

0
VSL
| i
Gin : : Gout
= | | =
l 1
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ES with Nonlinear PDEs

Predictor Feedback for ESC with Lighthill-Whitham-Richards (LWR) Process

LWR PDE model

p(0,t) = o(t) @p(m) om0 Gout (t)
1 Predictor feedback with Hessian estimate l M)
i ®
S(t) % N(t)
Actuation dynamics (LWR): Dither Signals:
Otp + 0x(Qc(p)) = 0 where 5(t) = asin (w(t + D))
x € [0, 1], tE[O 2) M(t) = 2sin (wt)
Qc(p) = —Ep” + vep N(t) = =& cos (2wt).
Boundary flow: Estimate Error:
gin(t) = Qc(p(0, 1)) e(t) = o(t) -
Gout (t) = Q(p(L, t))
Locally:
qout(t) = Cf"‘%(@(t_ D)_p*)z u
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ES with Nonlinear PDEs

Predictor Feedback for ESC with Lighthill-Whitham-Richards (LWR) Process

LWR PDE model

p(0,1) = o(t) Bt V() =0 p(L;t) (om0 - Gout ()

| Predictor feedback with Hessian estimate
| l M)
()
|
L ()
; ®
S(t) i i N(t)
| O
|
|
|

Theorem: Consider the closed-loop system. There exits ¢y > 0 such that
Ve > co, there exists wo(cp) > 0 such that Yw > wo, the closed-loop system has
a unique exponentially stable periodic solution in period T = %’T denoted by
e’ (t— D), U"(7),¥r € [t — D, t], satisfying ¥Vt > 0
1

(\eT(t —D)P+|UT()P + fOD U7 (7)dT f < O(1/w). Furthermore,

lim suplo(t) — p*| = O(a+1/w) and
t—+oo

lim sup |qous(t) — q*| = O(a* + 1/w?). 48
t—+oo
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ES with Nonlinear PDEs

Predictor Feedback for ESC with LWR Process - Simulation

o
0.28 —p(L,t)

Density (veh/m)

0 50 100 150
Time (seconds)

Output flow (veh/s)

0 50 100 150
Time (seconds)
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ES with Nonlinear PDEs

Predictor Feedback for ESC with LWR Process - Application

Hessian Estimate
S0 & ok A
8 5883 o

8

70+

—
—i

-80
0

30 60 90 120 150
Time (seconds)

o @

Outgoing flow (veh/s)
IS
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50 100 150
Time (seconds)
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ES with Multiple PDEs

Challenge - Multivariable Newton-based ES

01(t) = a(Dy,t) O4(t) = a1 (0,1t)

Oy (2, 1) = Opgonr (w, 1)

| ) = a0, ) 0,(t) = ai(0,1) | D

Oei(x,t) = Oppevi(w,t) G

| 20

0u(t) = an(0,1) |

[6.() = au(D,t)

|(r)ta'n (@,t) = Opprn(w,t)

M(t)
5 Multivariable l
@ o) m v Diffusion, z_Tal G D)
Iﬂ Compensation [ES=A} O/
T - Controller
S(t) I'— T —w, AT v—(?
Riccati Filter

N(t)
The Newton algorithm effectively “diagonalizes” the map and allows “decentralized”
compensators for each control channel, whereas the Gradient algorithm has to perform

diffusion compensation of the cross-coupling of the channels. 51
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ES with Multiple PDEs

Multivariable ES for Distinct Classes of PDE Systems

PDE: Opcvi(x, t)=ciOxai(x, t)+ bidxai(x, t)+A; n,(x t), ¢>0,b;>0,12>0
b
Boundary Control (Dirichlet) :  Uj(t) = 7%= {—k e % {')(1) i(£) + o e m(1 — o)u(o, t)do} } s

B

7(x) = cosh (1/Ex) + £ ﬁsinh(ﬁx), €= B2/(4es) — N > 0.,
RAD Equation | ™%~ 7) = #\/Esinh (\[,(X - rr)) xe0,1]
Trajectory Generation :  S;(t) = e 1w Dy 22() 22 (t)

> Re z(. (2k+1)‘
ak = ijSi"(W:!)Zl;:o (5)€< +3 * cos(wit) Yho (peq) €20 L™

PDE: duai(x,t) = ai(x, t), x €0, D]

Boundary Control (Neumann) :  Uj(t) = {c[ kiui(Ds, t) — Beui(Di, )] + p( D)z +
00 R
1o

J2 p(Di — 0)0rui(o, t)da}, o(s) = ko fe o "

Trajectory Generation :  S;(t) = 2 sin(w;D;) sin(w;t)

Wave Dynamics

PDE: d:ai(x,t) = dcai(x, t), x<[0,D;]
Boundary Control (Dirichlet) :  Ui(t) = 75 {—k; [z(t) + [ ui(o: t)do |}
Trajectory Generation :  S;(t) = ajsin(w;(t + D;))

Delays

52
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ES with Multiple PDEs

Challenge - Multivariable Newton-based ES (i =1,2)
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Outline Standard ES ES with hyperbolic PDEs ES with parabolic PDEs ES with Nonlinear PDEs ES with Multiple PDEs

Conclusion

known actuator dynamics
unknown static map Extensions
existence of extremum ® multivariable Newton-based

ESC

* dynamic plants

(ODE+PDE)

® measurement dynamics
described by diffusion PDEs

semi-model based
exponential stability
local convergence

convergence speed
independent of the Hessian

54
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ES with Multiple PDEs

16" International scopt IMPORTANT DATES
hop on Variable .

Organizing
Committee

Extremum See Systems Described by Pa



ES with Multiple PDEs

Questions?

Prof. Tiago Roux Oliveira
Contact: tiagoroux@uerj.br
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